现在的位置: 主页 > 主打产品 > 文章列表

关键字匹配之BF算法-python实现

作者:福建省医学会血液病学分会 来源:www.fjhematology.org 发布时间:2017-09-09 10:24:09
 

关键字匹配之BF算法-python实现 #!/usr/bin/python # -*- coding: UTF-8 # filename BF import time """ t="this is a big apple,this is a big apple,this is a big apple,this is a big apple." p="apple" """ t="为什么叫向量空间模型呢?其实我们可以把每个词给看成一个维度,而词的频率看成其值(有向),即向量,这样每篇文章的词及其频率就构成了一个i维空间图,两个文档的相似度就是两个空间图的接近度。假设文章只有两维的话,那么空间图就可以画在一个平面直角坐标系当中,读者可以假想两篇只有两个词的文章画图进行理解。" p="读者" i=0 count=0 start=time.time() while (i <=len(t)-len(p)): j=0 while (t[i]==p[j]): i=i+1 j=j+1 if j==len(p): break elif (j==len(p)-1): count=count+1 else: i=i+1 j=0 print count print time.time()-start

算法思想:目标串t与模式串p逐词比较,若对应位匹配,则进行下一位比较;若不相同,p右移1位,从p的第1位重新开始比较。
算法特点:整体移动方向:可认为在固定的情况下,p从左向右滑动;匹配比较时,从p的最左边位开始向右逐位与t串中对应位比较。p的滑动距离为1,这导致BF算法匹配效率低(相比其他算法,如:BM,站群,KMP,站群系统,滑动没有跳跃)。
该算法的时间复杂度为O(len(t)*len(p)),空间复杂度为O(len(t)+len(p))

企业建站2800元起,携手武汉肥猫科技,做一个有见地的颜值派!更多优惠请戳:神农架SEO http://shennongjia.raoyu.net

  • 上一篇:把握用户搜索心理 合理设计站内搜索功能
  • 下一篇:最后一页
  •